Tendencias

martes, 6 de marzo de 2018

José Manuel Mustafá: Cómo calcular una zapata con flexión esviada

En el post de hoy vamos a hablar de cómo calcular la tensión máxima que transmite una zapata al terreno cuando está sometida a flexión esviada, es decir, con momentos actuando simultáneamente en dos planos diferentes.

Existen varios métodos para esto y además se puede hacer tanto un planteamiento elástico como plástico.

Si nos centramos en una distribución elástica, en el ya clásico “Cálculo de Estructuras de Cimentación” de J. Calavera, se presentan los ábacos de Teng que resuelven el problema.

Pero hemos querido presentar un método quizás no tan conocido: se trata de los ábacos de Hülsdünker recogidos en las normas DIN alemanas.

Sabemos que bajo la zapata de dimensiones en planta a·b, se produce la distribución de tensiones según Navier, dada por:

La fórmula anterior dá las tensiones en cada esquina de la zapata, cuyo valor será distinto en cada caso. Es válida, siempre y cuando no aparezcan resultados negativos ya que como sabemos, el terreno no admite tracciones.

Esto ocurrirá cuando tengamos axiles pequeños y momentos grandes, o dicho de otra forma, grandes excentricidades.

Si recordamos la definición de núcleo central, siempre y cuando el axil excéntrico se encuentre dentro del núcleo central, no se producirán despegues.

Para una sección rectangular como la de la base de la zapata, el núcleo central es un rombo. Matemáticamente no se producirán despegues cuando:

Siendo a y b las dimensiones que se oponen al momento Mx y My respectivamente según el esquema anterior.

El problema radica en el proceso iterativo que hay que realizar cuando se producen despegues, ya que el área de apoyo se vá reduciendo al producirse despegue en la parte traccionada.

Hülsdünker contruyó el ábaco que presentamos a continuación, que tenía esta reducción de área de apoyo en cuenta, en función de las excentricidades relativas:

Si llamamos a=bx y b=by a las dimensiones en planta de la zapata, N=V a la carga vertical, a partir de las excentricidades relativas ε=ex/bx y δ=ey/by, puede determinarse el parámetro μ, que permite determinar la tensión máxima σ0 bajo la zapata.

Veamos un ejemplo.

Si tenemos una zapata cuadrada de dimensiones en planta bx=by=2m, sobre la que actúa un axil de 400 kN, un Mx=200 kN·m y un My=120 kN·m, la tensión máxima se obtiene de la siguiente forma:

a) Se calculan las excentricidades absolutas:

b) Se calculan las excentricidades relativas:

c) Entrando en el ábaco de Hülsdünker se obtiene el parámetro μ=4,2 por lo que la tensión máxima valdrá:

De esta forma tan directa y sin tener que iterar, puede obtenerse la tensión máxima bajo la zapata teniendo en cuenta la reducción de la superficie de apoyo por los despegues.

Espero resulte útil.


¿Quieres ser el primero en leer nuestros artículos?

Déjanos tu nombre y un email válido, y nosotros te avisaremos cuando hayan novedades en Estructurando

Flecha-roja

 

La entrada Cómo calcular una zapata con flexión esviada aparece primero en Estructurando.



Ver Fuente

Compartir:

Publicar un comentario

 
Copyright © 2017 JOSÉ MANUEL MUSTAFÁ Gooyaabi Templates